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Resonance in a Spherical-Circnlar Microstrip
Structure with an Akgap

Kin-Lu Wong, Member, IEEE, and Hong-Twu Chen

Abstract—The resonance problem of the spherical-circular microstrip
structure with an airgap between the snbstrate layer and the ground

conducting sphere is studied by using a rigorous Green’s function formu-
lation in the spectral domain and Galerkin’s moment method calculation.

Complex resonant frequencies are obtained in thk study, which provide
the resouant frequencies and half-power bandwidth of the structure.

From the numerical results, it is fouud that with the increasing of the air-
gap thickness, the half-power bandwidth of the stroctnre is considerably
increased. This improves the low-bandwidth characteristics of microstrip

structures. Details of the numerical results are preserrted and discussed.

I. INTRODUCTION

In the application of land-mobile satellite communications, spheri-

cal microstrip antennas are suitable to be used to overcome the

scanning problems involved with the planar patch antennas at low

elevation [1], [2]. Several investigations on the spherical-circular

microstrip patch antennas have also been reported recently [2] – [4].

In the present paper, we report a possible geometry of the spherical-

circular micro strip structure with an airgap between the substrate

and ground conducting sphere (see Fig. 1), which improves the low

bandwidth characteristics of microstrip structures. Green’s function

formulation in the spectral domain [3] and Galerkin’s moment

method [5] are employed in studying the resonant problem of such a

geometry. Complex resonant frequencies which provide the resonant

frequency and half-power bandwidth of the structure are calculated

and analyzed as a function of the airgap thickness. Details of the

results for the TMu mode are presented.

II. THEORETICAL FORMULATION OF THE PROBLEM

The geometry of a spherical-circular microstrip structure with an

airgap is shown in Fig. 1. The airgap (region 1) is with a thickness of

$ (= ~ – a) and the substrate (region 2) thickness is h (= c – b). The

substrate layer is with a relative permittivity. 52. A circular patch of

radius rd is mounted on the substrate and the radius of the ground

conducting sphere is a. The region of r > c is free space (region 3)

with permittivity so and permeability p,.. By expanding the wave

equations in spherical coordinates, the wave can be decomposed

into the TM to ? and TE to + component which are, respectively,

generated by the electric potential A,? and magnetic potential F,?.
These potential in region i (i = 1,2,3) can be w

e~‘t time dependence)

itten as (suppressing

kzr)]l%(coso) ,

(la)

F,t = e~mb ~ P%(n) pn(w + Pt(n)Yn(ktr)]PH (coso) ,

n=m

(lb)

Manuscript received August 31, 1992; revised December 18, 1992. This
work was supported by the National Science Council of the Republic of China
under Contract NSC81-0404-E1 10-544.

The authors are with the Department of Electrical Engineering, National
Sun Yat-Sen University, Kaohsiung, Taiwan 804, Republic of China.

IEEE Log Number 9210210.

AND TECHNIQUES, VOL. 41, NO, 8>AUGUST 1993

&3 = 1.0, a3(rt) = p3(rz) = –j

where ~m(x) and $’~ (z) are, respectively, the spherical Bessel

functions (Schelkunoff type) of the first and second kind with order

n; Pnm(x) is the associated Legendre function of the first kind with

order m and degree n. A,(n), cu (n.), 1?,(n), and ~,(n) are unknown

coefficients of the harmonic order n to be determined by the boundary

conditions at T = a, b, and c.

In terms of the aforementioned potential functions, the transverse

field components in each region can be obtained. By using the vector

Legendre transform introduced in [3], the spectral amplitudes of the

transverse field components in region i can then be expressed as

The prime in the aforementioned equation means a derivative with

respect to the argument. To simplify the problem, we define a matrix—
R,(n) satisfying the following relation:

E,(n) =F, (n)E,(rz). (3)

By substituting (2) to (3), the elements of the matrix ~,(n) can be

obtained and written as

(4)

with

Next, by imposing the

i.e.

E,(n) = [0],

EI(7L)=.E2(n),

fiI(n)=E2(n),

Ez(n)= .E.3(n),

[ ][
Y.(n) = : ;1 fi3(n) -E2(n)], on the patch (6e)

boundary conditions in the spectral domain,

atr=a, (6a)

at T=b, (6b)

atr=b, (6c)

atr=c, (6d)

where ~~ ( n ) is the spectral amplitude of the surface current density

on the patch, the relationship of the surface current density and the

tangential electric field on the patch can be derived to be

Y,(n) =F(n)E. (n).

[

Yll(n) oF(n) = o 1152(7L) “
(7)

—
The elements in the ~ matrix are expressed as

YI, (n) = –R:l(n) + R:’(n), (8a)

Ijz(n) = l?~’(n) – R;’(n) (8b)
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Fig. 1. Geometry of a spherical-circular microstrip structure with an airgap.

with

al(n) = –~~(kla)/Y~(kla) ,

Pi(n) = -~. (klr3)/Y. (kla),

R; ’(n)~L(k2b) + j/Z& (kJr)Clz(n)= –
R;’(rt)i:(k,b) +j/aYn(k2b)

~2(n) = -
R~l(n)~. (k2b) + j~m~L(k2b)

R;l(n)Yn(k2b) + j/Z Y;(k2b)

The expressions of Y1l and Y22 can be reduced to the corresponding

results in [3], when setting El = E2, kl = kz, i.e., no airgap is present.

Then, by following the Galerkin’s procedure [5], [6] (expanding the

surface current density on the patch with a set of orthogonal functions

and weighting (7) with the same set of functions), using the Parseval’s

theorem [3], and applying the boundary condition that the surface

current and the electric field are complementary to each other on the

surface of r = b, we have

[2][1] = [O]. (9)

The elements in [1] are the unknown coefficients of the expansion

functions and the- elements in [Z] are written as

n.rn

with

2n(n + l)(n + m)!

‘(n’m) = (2n+ 1)(7I - m)! “

~he superscript * denotes the complex conjugate

(lo)

transpose and

~;(n) is the spectral amplitude of the ith expansion function. A

convenient choice of the expansion functions is the cavity-mode

functions derived in [3]. For the existence of nontrivial solutions

for [1] in (9), the determinate of [Z] must vanish, i.e.,

det([Z]) = O. (11)

The solutions to (11) are then found to be satisfied by complex

frequencies ~ = j’ + j~”, which give the resonant frequency f’

and the half-power bandwidth 2~” /j’ for the microstrip structure.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, typical numerical results of the complex resonant

frequency at TMH mode are presented. The substrate is selected to

be with cz = 2.32 and h = 1.59 cm. The radius of the circular patch

is ra = 5 cm. The effects of introducing an airgap of &l = 1.0

between the substrate and the ground conducting sphere are first

discussed in Fig. 2, where the real and imaginary parts of the complex
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Fig. 2. (a) Real and (b) Imaginary parts of the complex resonant frequencies
for the microstrip structure with &Z = 2.32, h = 1.59 cm, rd = 5 cm,

el = 1.0 (airgap) or 232, a = 5, 10 cm and m (planar case).
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Fig. 3. Half-power bandwidth of the spherical-circular microstrip structure

for the case in Fig. 2.

resonant frequencies are shown. The planar case (a = co cm) is also

presented for comparison. For both spherical and planar struciure,

two cases of el = 1.0, m = 2.32 (region 1 is an airgap) and

cl = sz = 2.32 (region 1 is the same dielectric material as in

region 2, i.e., the substrate thickness is now s + h) are presented.

The results of the planar circular microstrip structure (a = cc cm)

for the cases of with and without an airgap are, respectively, obtained

in [7] and [8]. On the other hand, the results of the spherical-circular

microstrip structure are obtained in the present paper. The correctness

of our numerical calculation has also been verified by obtaining the

same results described in [3] for the case of without the airgap. For

brevity, these results are not shown here. From the results in Fig. 2(a)

for the case of el = 1.0, S2 = 2.32, it is seen that, initially, the
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resonant frequency is increased as s increased. This behavior is quite

different from that for the case of El = ez = 2.32, where the resonant

frequency is decreased as s is increased. This is probably due to the

effective permittivity of the region under the patch being lowered with

the existence of the airgap. As for the imaginary resonant frequencies,

the results are shown in Fig. 2(b). It is seen that with an airgap

the imaginary resonant frequency is higher, i.e., the radiation 10SS

of the structure is increased. The spherical structure is also seen to

be a more efficient radiator than the planar structure. Fig. 3 shows

the half-power bandwidth of the microstrip structure for the case in

Fig. 2. The bandwidth is seen to be considerably increased due to

the existence of an airgap and the spherical structure is also with a

higher bandwidth as compared to the planar structure.

IV. CONCLUSIONS

The geometry of the spherical-circular microstrip structure with

an airgap is studied. Complex resonant frequencies at TMII mode

for both the spherical and planar structures are presented. Results

indicate that the radiation loss of the microstrip structure increases as

the airgap thickness is increased and the spherical structure with an

airgap is also a more efficient radiator than the planar structure with

an airgap. Furthermore, the half-power bandwidth of the microstrip

structure is considerably increased due to the existence of an airgap,

and the bandwidth of the spherical structure is also greater than that of

the planar structure. This improves the low bandwidth characteristics

of the microstrip structure.
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Useful Bessel Function Identities and Integrals

E. B. Manring and J. Asmussen, Jr.

Abstract—A number of previously unpublished Bessel function iden-

tities and indefinite iutegrals are listed. These are useful in solving
electromagnetic problems in cylindrical coordhrates, including energy
and power calculations, and mode orthogonafization in Iossy media. Using

these integrals in conjunction with two prcvionsly published indefinite
Bessel function integrals, two orthogonafity integrals are derived. Values

of the indefinite integrals at limits of zero and infinity are also given.

I. INTRODUCTION

Often in the solution of electromagnetic problems in cylindrical

coordinates, products of Bessel functions are encountered in indefinite

integrals or elsewhere. Examples are orthogonalization integrals of

modal expansions for matching fields across discontinuities, calcula-

tion of power dissipated and energy stored in cylindrical waveguides

and cavities, or similar calculations for cylindrical dielectric wave-

guides [1]. While there are tabulated solutions to certain of these

integrals [2], [3], some cannot be found in common references.

The integrals given in [1] are needed in energy and power cal-

culations in geometries of circular symmetry with lossless materials.

However, in lossy media, the radial wavenumbers, kp, are complex.

In that case ,$P # k; and the integrals in [1] cannot be used.

Two new indefinite integrals are given below which account for

the kg # k; case. These integrals are also needed when using

one mode to orthogonalize a modal series expansion of electric or

magnetic fields in a waveguide or cavity at an axial junction. In

addition to these integrals, three recurrence identities and another

indefinite integral are listed which may be useful in other instances.

Since indefinite integrals are often evaluated at limits of zero and

infinity, the values of the integrals at these limits are enumerated

here. Employing the limiting case at zero for the ordinary Bessel

function integral in conjunction with one of the integral identities in

[1], certain orthogonality properties of the ordinary Bessel functions

may be derived. Two of them, which appear in orthogonality integrals

for homogeneously loaded waveguides, are given below.

II. INDEFINITE INTEGRALS

Given Fv and Gv, such that

Fv(az) = A.Jv(az) + BYv(cYz) ,

F;(cLz) = AJ; (cw) + BY;(w)

Gv(/?z) = CJz/(/3Z) + Dyu($z) >

G;(/3z) = C.J:(/?z) + DY;(@) (12)

where Jv and Y. are ordinary Bessel functions of the first and

second kinds with complex arguments, and v is an arbitrary complex

constant, it is possible to show that

ff #P. (13)

‘1) d Hs) are linear combinations ofSince the Hankel functions Hv an

Jv and Yv, (2) is also true if Fu and G“ contain linear combinations
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