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Resonance in a Spherical-Circular Microstrip
Structure with an Airgap

Kin-Lu Wong, Member, IEEE, and Hong-Twu Chen

Abstract—The resonance problem of the spherical-circular microstrip
structure with an airgap between the substrate layer and the ground
conducting sphere is studied by using a rigorous Green’s function formu-
lation in the spectral domain and Galerkin’s moment method calculation.
Complex resonant frequencies are obtained in this study, which provide
the resonant frequencies and half-power bandwidth of the structure.
From the numerical results, it is found that with the increasing of the air-
gap thickness, the half-power bandwidth of the structure is considerably
increased. This improves the low-bandwidth characteristics of microstrip
structures. Details of the numerical results are presented and discussed.

I. INTRODUCTION

In the application of land-mobile satellite communications, spheri-
cal microstrip antennas are suitable to be used to overcome the
scanning problems involved with the planar patch antennas at low
elevation [1], [2]. Several investigations on the spherical-circular
microstrip patch antennas have also been reported recently [2]-[4].
In the present paper, we report a possible geometry of the spherical-
circular microstrip structure with an airgap between the substrate
and ground conducting sphere (see Fig. 1), which improves the low
bandwidth characteristics of microstrip structures. Green’s function
formulation in the spectral domain [3] and Galerkin’s moment
method [5] are employed in studying the resonant problem of such a
geometry. Complex resonant frequencies which provide the resonant
frequency and half-power bandwidth of the structure are calculated
and analyzed as a function of the airgap thickness. Details of the
results for the TM;; mode are presented.

II. THEORETICAL FORMULATION OF THE PROBLEM

The geometry of a spherical-circular microstrip structure with an
airgap is shown in Fig. 1. The airgap (region 1) is with a thickness of
s (= b—a) and the substrate (region 2) thickness is h (= c—b). The
substrate layer is with a relative permittivity. £5. A circular patch of
radius rq is mounted on the substrate and the radius of the ground
conducting sphere is a. The region of r > ¢ is free space (region 3)

with permittivity ¢o and permeability po. By expanding the wave-

equations in spherical coordinates, the wave can be decomposed
into the TM to # and TE to # component which are, respectively,
generated by the electric potential A7 and magnetic potential F7.
These potential in region ¢ (¢ = 1, 2, 3) can be written as (suppressing
e’* time dependence)

ejm¢ Z Al(n) [jn(le) + m(n)Yn(

n=m

A = klr)]Py(cose) .

(1a)

F., =™ Z B.(n) [ (ko) + 8. (n) Y (R, r)]Pm(cose),
(1b)
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with

k, = W4/ HoE0E,,

where J,(r) and Y,(z) are, respectively, the spherical Bessel
functions (Schelkunoff type) of the first and second kind with order
n; PJ*(z) is the associated Legendre function of the first kind with
order m and degree n. A,(n), o, (n), B,(n), and 3,(n) are unknown
coefficients of the harmonic order n to be determined by the boundary
conditions at r = a, b, and c.

In terms of the aforementioned potential functions, the transverse
field components in each region can be obtained. By using the vector
Legendre transform introduced in [3], the spectral amplitudes of the
transverse field components in region ¢ can then be expressed as

ez = 1.0, as(n) = Bs(n) = —J

— . A4,(n) [J' (k7)) + o, (n)Y (K, r)]

E.n) = Feisor ] i 22)
1 Bl(n) [Fa k) + Bu(n) Vo (k)]
N e B [T (ker) + 8. T (k)]
(n) = (2b)

—L Ai(n) [jn(kzr) + ai(n)?n(kzr)]

The prime in the aforementioned equation means a derivative with
respect to the argument. To simplify the problem, we define a matrix
R,(n) satisfying the following relation:

H,(n) =R.,(n)E.(n). ©))

By substituting (2) to (3), the elements of the matrix R, (n) can be
obtained and written as

= 12
with
R12(Tl) \/m J (k 'I‘) + B (TL)Y’(}C T) (Sa)
Jn (k) + B (n) ¥y, (B,r)’
Rzl(n lsovl Jn (k.7) + a, (n)Yn(k ) (5b)
J,’l(kzr) + a, n)},{(kzr)

Next, by imposing the boundary conditions in the spectral domain,
ie.

g’l(n): [0], atr=a, (6a)
E’l(n)zg'z(n), atr ==, (6b)
Iﬁ' (n)= I-zlz(n), atr =25, (6¢)
E (n) = 1%3 (n), atr =c, (6d)
To(n) = {(1) 0 } [Hs(n) — By n)} on the patch (6¢)

where J, s{n) is the spectral amplitude of the surface current density
on the patch, the relationship of the surface current density and the
tangential electric field on the patch can be derived to be

5 = | _ | Yun) 0
J(n)—-) (n)E,(n). Y(n)-—|: 0 Yzz(n)}' @)
The elements in the Y matrix are expressed as
Yii(n) = =R3' (n) + R3' (), (82)
Ya2(n) = R3*(n) — Ry’ (n) (8b)
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Fig. 1. Geometry of a spherical-circular microstrip structure with an airgap.

with
ai(n) = —J; (k1a)/Y; (k1)
Bi(n) = _jn(kla)/Yn(kla) s
_ R{'(n)J;,(kzb) + j\/c05a /o Ju (k2b)

as(n) = R (n) V4 (ksb) + jr/z0e2/ o Vo (kb)
fa(n) = - T ()T (ksb) + i Eoca o Ju(kab)

R2(n)Y,, (ka2b) + j/eoe2/po Vi) (k2b)

The expressions of Y13 and Y22 can be reduced to the corresponding
results in [3], when setting €1 = ¢2, k1 = k2, i.e., no airgap is present.
Then, by following the Galerkin’s procedure [5], [6] (expanding the
surface current density on the patch with a set of orthogonal functions
and weighting (7) with the same set of functions), using the Parseval’s
theorem [3], and applying the boundary condition that the surface
current and the electric field are complementary to each other on the
surface of r = b, we have

[Z]11] = [0]. ©)

The elements in [I] are the unknown coefficients of the expansion
functions and the elements in [Z] are written as

Z; = Z ?f(n)s(n, m)l:/_lsz(n) (10)
with
s(n,m) = 2n(n + 1)(n + m)!

2n+1)(n —m)! ~

The superscript * denotes the complex conjugate transpose and
j,(n) is the spectral amplitude of the ith expansion function. A
convenient choice of the expansion functions is the cavity-mode

functions derived in [3]. For the existence of nontrivial solutions
for [I] in (9), the determinate of [Z] must vanish, i.e.,

det([Z]) = 0. 11

The solutions to (11) are then found to be satisfied by complex
frequencies f = f' + jf”, which give the resonant frequency f’
and the half-power bandwidth 2"/ f' for the microstrip structure.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, typical numerical results of the complex resonant
frequency at TMy; mode are presented. The substrate is selected to
be with £2 = 2.32 and h = 1.59 cm. The radius of the circular patch
is 74 = 5 cm. The effects of introducing an airgap of ¢; = 1.0
between the substrate and the ground conducting sphere are first
discussed in Fig. 2, where the real and imaginary parts of the complex
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Fig. 2. (a) Real and (b) Imaginary parts of the complex resonant frequencies
for the microstrip structure with €2 = 2.32, A = 1.59cm, ry = 5 cm,
€1 = 1.0 (airgap) or 2.32, @ = 5, 10 cm and oo (planar case).
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resonant frequencies are shown. The planar case (a = co cm) is also
presented for comparison. For both spherical and planar structure,
two cases of 1 = 1.0, e2 = 2.32 (region 1 is an airgap) and
€1 = €2 = 2.32 (region 1 is the same dielectric material as in
region 2, i.e., the substrate thickness is now s + h) are presented.
The results of the planar circular microstrip structure (a = oo cm)
for the cases of with and without an airgap are, respectively, obtained
in [7] and [8]. On the other hand, the results of the spherical-circular
microstrip structure are obtained in the present paper. The correctness
of our numerical calculation has also been verified by obtaining the
same results described in [3] for the case of without the airgap. For
brevity, these results are not shown here. From the results in Fig. 2(a)
for the case of &1 = 1.0, e = 2.32, it is seen that, initially, the
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resonant frequency is increased as s increased. This behavior is quite
different from that for the case of £, = ¢3 = 2.32, where the resonant
frequency is decreased as s is increased. This is probably due to the
effective permittivity of the region under the patch being lowered with
the existence of the airgap. As for the imaginary resonant frequencies,
the results are shown in Fig. 2(b). It is seen that with an airgap
the imaginary resonant frequency is higher, i.e., the radiation loss
of the structure is increased. The spherical structure is also seen to
be a more efficient radiator than the planar structure. Fig. 3 shows
the half-power bandwidth of the microstrip structure for the case in
Fig. 2. The bandwidth is seen to be considerably increased due to
the existence of an airgap and the spherical structure is also with a
higher bandwidth as compared to the planar structure.

IV. CONCLUSIONS

The geometry of the spherical-circular microstrip structure with
an airgap is studied. Complex resonant frequencies at TM1; mode
for both the spherical and planar structures are presented. Results
indicate that the radiation loss of the microstrip structure increases as
the airgap thickness is increased and the spherical structure with an
airgap is also a more efficient radiator than the planar structure with
an airgap. Furthermore, the half-power bandwidth of the microstrip
structure is considerably increased due to the existence of an airgap,
and the bandwidth of the spherical structure is also greater than that of
the planar structure. This improves the low bandwidth characteristics
of the microstrip structure.
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Useful Bessel Function Identities and Integrals

E.B. Manring and J. Asmussen, Jr.

Abstract— A number of previously unpublished Bessel function iden-
tities and indefinite integrals are listed. These are useful in solving
electromagnetics problems in cylindrical coordinates, including energy
and power calculations, and mode orthogonalization in lossy media. Using
these integrals in conjunction with two previously published indefinite
Bessel function integrals, two orthogonality integrals are derived. Values
of the indefinite integrals at limits of zero and infinity are also given.

1. INTRODUCTION

Often in the solution of electromagnetics problems in cylindrical
coordinates, products of Bessel functions are encountered in indefinite
integrals or elsewhere. Examples are orthogonalization integrals of
modal expansions for matching fields across discontinuities, calcula-
tion of power dissipated and energy stored in cylindrical waveguides
and cavities, or similar calculations for cylindrical dielectric wave-
guides [1]. While there are tabulated solutions to certain of these
integrals [2], [3], some cannot be found in common references.

The integrals given in [1] are needed in energy and power cal-
culations in geometries of circular symmetry with lossless materials.
However, in lossy media, the radial wavenumbers, k,, are complex.
In that case k, # k, and the integrals in [1] cannot be used.
Two new indefinite integrals are given below which account for
the k, # k, casc. These integrals are also needed when using
one mode to orthogonalize a modal series expansion of electric or
magnetic fields in a waveguide or cavity at an axial junction. In
addition to these integrals, three recurrence identities and another
indefinite integral are listed which may be useful in other instances.
Since indefinite integrals are often evaluated at limits of zero and
infinity, the values of the integrals at these limits are enumerated
here. Employing the limiting case at zero for the ordinary Bessel
function integral in conjunction with one of the integral identities in
[1], certain orthogonality properties of the ordinary Bessel functions
may be derived. Two of them, which appear in orthogonality integrals
for homogeneously loaded waveguides, are given below.

II. INDEFINITE INTEGRALS
Given F, and G, such that
F.(az) = AJ,(az)+ BY,(az),
F)(az) = AJ,(az) + BY, (az)
Gy (Bz) = CJ,(Bz) + DY, (B2),
G, (Bz) = CJ,(82) + DY, (82) (12)
where J, and Y, are ordinary Bessel functions of the first and

second kinds with complex arguments, and v is an arbitrary complex
constant, it is possible to show that

/ {FL(O‘Z)GL(ﬂZ) + 5%;2— Fo(az)Gu(B2)|zdz>
= oo (0B (02)GL(52) = BEL(02)Gu (53],

a#p. (13)

Since the Hankel functions H, 1(,1) and H, ,52) are linear combinations of
J, and Y, (2) is also true if F,, and (G, contain linear combinations
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